

Journal of Organometallic Chemistry 630 (2001) 263-265

www.elsevier.com/locate/jorganchem

⁵⁷Fe-NMR spectroscopy revisited: ferrocene derivatives containing heterosubstituents

Bernd Wrackmeyer *, Anahid Ayazi, Heidi E. Maisel, Max Herberhold *

Laboratorium für Anorganische Chemie der Universität Bayreuth, Building NW 1, Postfach 10 12 51, D-95440 Bayreuth, Germany

Received 19 March 2001; accepted 17 May 2001

Abstract

⁵⁷Fe-NMR spectra (16.1 MHz; natural abundance) of mono- and 1,1'-disubstituted ferrocene derivatives (1–15), including two ferrocenophanes (14, 15), could be measured in a much shorter time than expected according to previous reports (500 MHz spectrometer, standard equipment; solutions in 5-mm tubes). Substituents were 'Bu, alkynyl, silyl, germyl, stannyl and boryl groups, and the bridges in the ferrocenophanes were SiMe₂ (14) and Me₂SiSiMe₂ units (15). The δ^{57} Fe values cover a fairly large range of > 450 ppm. There is a large difference (365 ppm) in ⁵⁷Fe nuclear shielding for the two ferrocenophanes, with the higher ⁵⁷Fe shielding in the [1]ferrocenophane 14. Parallel trends were observed between δ^{57} Fe of ferrocene derivatives and δ^{55} Mn of comparable sandwich complexes derived from [(η⁵-C₅H₅)Mn(η⁶-C₆H₆)]. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Ferrocenes; ⁵⁷Fe-NMR; ⁵⁵Mn-NMR

1. Introduction

The importance of ferrocene chemistry [1] has called for the systematic application of numerous physical methods. However, ⁵⁷Fe-NMR spectroscopy [2a] which should in principle serve as a highly diagnostic tool, did not receive much attention. This can be ascribed to literature reports [2-4] which have pointed out that special probeheads are necessary to accommodate large sample volumes (e.g. ≥ 7 ml in 15 mm or 20 mm (o.d.) tubes) containing > 1 g of the ferrocene derivative. Even then, apparently 12-24 h of spectrometer time had been required to record meaningful 57Fe-NMR signals by direct single pulse NMR [5]. Thus, the unfavourable experimental circumstances owing to the inherent extremely low ⁵⁷Fe-NMR receptivity (⁵⁷Fe: I = 1/2; natural abundance 2.2%; receptivity with respect to ¹³C: 4.19×10^{-3}) have discouraged widespread application of ⁵⁷Fe-NMR spectroscopy at natural abundance [6]. We report here that this rather gloomy

picture of ⁵⁷Fe-NMR can be substituted for a much brighter outlook.

2. Results and discussion

2.1. ⁵⁷Fe-NMR measurements

We have used optimized experimental conditions for measuring 16.1 MHz ⁵⁷Fe-NMR spectra of ferrocene derivatives at natural abundance of ⁵⁷Fe in 5-mm tubes (sample volume 0.5 ml) with a standard probehead for low-frequency nuclei. The ⁵⁷Fe-NMR signal of a 0.8 M solution of ferrocene (ca. 75 mg in 0.5 ml of CDCl₃) could be observed already after 30 min of spectrometer time (S/N ca. 2.5:1). This improvement with respect to previous attempts [2-4] can be traced at least in part to the higher field strength B_0 : the increase in the sensitivity of the NMR experiment is accompanied by shorter relaxation times $T_1({}^{57}\text{Fe})$, since in the case of ferrocenes, the chemical-shift-anisotropy (CSA) relaxation mechanism is dominating [7], and this interaction depends on B_0^2 . The relaxation time $T_1({}^{57}\text{Fe})$ of ferrocene in CDCl₃ or C₆D₆ at 20 °C for $B_0 = 11.5$ T is in the range of 2.5-3.5 s. One can assume an additional advantage in comparison with previous ⁵⁷Fe-NMR

^{*} Corresponding authors. Tel.: +49-921-552540; fax: +49-921-552157.

E-mail addresses: b.wrack@uni-bayreuth.de (B. Wrackmeyer), max.herberhold@uni-bayreuth.de (M. Herberhold).

measurements considering improvements in the performance of the NMR hardware in the last 10-15 years.

2.2. Trends in δ^{57} Fe of ferrocenes and comparison with δ^{55} Mn of comparable manganese sandwich complexes

Since the previous ⁵⁷Fe-NMR studies of ferrocenes did not include derivatives with heteroelement substituents (except for iodine), we have measured the ⁵⁷Fe chemical shifts (δ^{57} Fe) of silyl, germyl, stannyl and boryl substituted ferrocenes for the first time. In addition to monosubstituted ferrocenes (**2**–**6**), several 1,1'disubstituted ferrocenes (**7**–**13**) and two ferro-

Table 1 Chemical shifts δ^{57} Fe of the ferrocene derivatives 1–15

No.	Compound	$\delta^{\rm 57}{ m Fe}$	No.	Compound	$\delta^{57}{ m Fe}$
1	Fc–H	0 a	7	$fc(tBu)_2$	79.3 ^ь
2	Fc–C=CH	142.1 °	8	fc(C=CsiMe ₃) ₂	309.5
3	Fc–SiMe ₃	83.8	9	$fc(SiMe_3)_2$	186.7
4	Fc-SiMe ₂ Cl	71.1	10	fc(SiMe ₂ H) ₂	170.3
5	Fc-SiCl ₃	73.8	11	$fc(GeMe_3)_2$	148.6
6	Fc-SnMe ₃	68.8	12	$fc(SnMe_3)_2$	150.2
			13	$fc(BBr_2)_2$	436.6
					438.5 ^ь
			14	fc[SiMe ₂]	-21.9
			15	$fc[(SiMe_2)_2]$	343.0

In CDCl₃ at 20 ± 1 °C (ca. 0.6–1 M solutions) if not stated otherwise. Decoupling of ¹H did not affect the ⁵⁷Fe line widths and was not used. Line widths $h_{1/2}$ of ⁵⁷Fe-NMR signals were in the order of 1–2 Hz, mainly determined by experimental conditions (digital resolution, applied exponential line broadening). Abbreviations: Fc = ferrocenyl, (η⁵-C₅H₅)Fe(η⁵-C₅H₄-); fc = 1,1'-ferrocenediyl, Fe(η⁵-C₅H₄-)₂.

^a δ^{57} Fe of ferrocene (Fc-H) = +1541.7 relative to δ^{57} Fe of Fe(CO)₅ with $\Xi(^{57}$ Fe) = 3.237798 MHz.

^b In C₆D₆ (2 M).

^c In exact agreement with Refs. [2b] and [2c].

Scheme 1. Comparison of chemical shifts δ^{57} Fe and δ^{55} Mn of sandwich complexes (δ^{55} Mn data from Ref. [11]; δ^{57} Fe data for fc(Me)₂ from Ref. [7], and for the half-open ferrocene from Ref. [4]).

cenophanes (14, 15) were included in this study (Table 1). In both the ferrocenyl (2–6) and the ferrocenediyl complexes (7–13), the parallel cyclopentadienyl ligands undergo unrestricted rotation about the main axis of the molecules running through the central Fe and the two centres of the respective cyclopentadienyl rings (angle Z–Fe–Z'180°). In the ferrocenophanes 14 and 15, the cyclopentadienyl rings are held in fixed positions, bent by an inclination angle α towards the bridging silicon atom(s) (fc[SiMe₂] (14): $\alpha = 20.8(5)^\circ$; $\delta = 164.78(8)^\circ$ [8]; fc[(SiMe₂)₂] (15): $\alpha = 4.19(2)^\circ$; $\delta = 176.48(3)^\circ$ [8]) in the solid state.

Similar to the effect of alkyl groups [2–4], the effect of organoelement substituents on δ^{57} Fe is almost additive as shown for the 1,1'-disubstituted ferrocenes **8**, **9** and **12**. The largest deshielding effect in the present series is caused by BBr₂ groups in fc(BBr₂)₂ (**13**). In the series of silicon-substituted ferrocene derivatives, the ⁵⁷Fe nuclear shielding varies over a range of 365 ppm (Table 1), the δ^{57} Fe values for the two ferrocenophanes being at the extreme ends of this range. This demonstrates the high sensitivity of δ^{57} Fe to structural changes, and further application of ⁵⁷Fe-NMR to the chemistry of ferrocenophanes [8–10] appears to become particularly promising.

In the case of Group 14 substituents, the comparison with δ^{55} Mn of analogously substituted manganese sandwich complexes, derived from $[(\eta^5-C_5H_5)Mn(\eta^6-C_6H_6)]$ [11], is attractive, since it allows comparison of the electronic structures of the manganese and iron sandwich complexes. As shown in Scheme 1, the trends in the chemical shifts δ^{57} Fe and δ^{55} Mn are strikingly similar.

The growing availability of experimental chemical shifts δ^{57} Fe is a challenge for quantum mechanical calculations of this NMR parameter. So far, the ⁵⁷Fe nuclear shielding of ferrocene could not be reproduced very well [12], and the weaknesses of present exchange-correlation (XC) functionals have been pointed out [13].

3. Conclusions

Our results indicate that δ^{57} Fe data for ferrocenes can be obtained in a much shorter time and with much smaller sample volumes (reduced by about 90%), than had been reported previously [2–4]. Therefore, we expect that ⁵⁷Fe-NMR will be used more often in ferrocene chemistry. The comparison of δ^{57} Fe with δ^{55} Mn is a first interesting aspect, and future work will establish links to δ^{59} Co of analogous cobaltocenium ions, and to both redox potentials and ⁵⁷Fe Mössbauer spectra of ferrocenes [14].

4. Experimental

All ferrocene derivatives 1-15 [15] were prepared following established literature procedures, and the solvents as well as the samples for NMR measurements were handled with care to exclude moisture and traces of oxygen.

⁵⁷Fe-NMR spectra (see Table 1 for further details) were recorded using a Bruker DRX 500 instrument. The length of the 90° pulse (80 μ s) was calibrated by measuring the ⁷³Ge-NMR signal of GeCl₄ in CDCl₃ at 17.5 MHz, assuming that the value would be similar for ⁵⁷Fe (16.1 MHz). Careful tuning of the probehead was repeated for each sample, and best homogeneity of B_0 was adjusted by optimizing the ¹H-NMR signals. Typically, more than 5000 transients with acquisition times of 0.4-0.5 s and a 30° pulse angle were used to cover a spectral window of 10 kHz (621 ppm). In order to reduce the base line distortion due to acoustic ringing, the delay between end of pulse and beginning of acquisition (dead time) was increased to 200 μ s. The $T_1({}^{57}\text{Fe})$ value for ferrocene was obtained by the inversion-recovery method.

Acknowledgements

This work was supported by the Fonds der Chemischen Industrie and by the DAAD (A.A.).

References

- A. Togni, T. Hayashi (Eds.), Ferrocenes, Homogeneous Catalysis, Organic Synthesis, Materials Science, VCH, Weinheim, 1995.
- [2] (a) For a review on ⁵⁷Fe-NMR spectroscopy, see R. Benn, in: P.S. Pregosin (Ed.), Transition Metal NMR, Elsevier, Amsterdam, 1991, pp. 103–142;
 (b) F. H. E. W. D. Ling, K. C. Ling, K. W. K. Statis, J. W. W. Statis, J. K. S. Ling, J. W. W. Statis, J. K. S. Ling, J. W. W. Statis, J. K. S. Ling, J. S. Statis, J. S. S

(b) E. Haslinger, W. Robien, K. Schlögl, W. Weissensteiner, J. Organomet. Chem. 218 (1981) C11;

(c) E. Haslinger, K. Koci, W. Robien, K. Schlögl, Monatsh. Chem. 114 (1983) 495.

[3] (a) T. Jenny, W. von Philipsborn, J. Kronenbitter, A. Schwenk, J. Organomet. Chem. 205 (1981) 211;
(b) W. von Philipsborn, Pure Appl. Chem. 58 (1986) 513;
(c) E.J.M. Meier, W. Kožminski, A. Linden, P. Lustenberger, W. von Philipsborn, Organometallics 15 (1996) 2469.

- [4] R. Benn, A. Rufinska, M.S. Kralik, R.D. Ernst, J. Organomet. Chem. 375 (1989) 115.
- [5] ⁵⁷Fe line widths of the single pulse ⁵⁷Fe-NMR spectra were the same, within experimental error, with or without ¹H decoupling. Otherwise, if scalar coupling is sufficiently large as in complexes containing Fe-H or Fe-P bonds, indirect detection of ⁵⁷Fe resonance signals via ¹H- or ³¹P-NMR works very well; see Refs. [2a] and [3c].
- [6] (a) ⁵⁷Fe-labelled ferrocenes, in particular α-ferrocenyl carbocations, have been studied by selective ¹³C{¹H, ⁵⁷Fe} experiments to measure δ⁵⁷Fe: A.A. Koridze, N.M. Astakhova, P.V. Petrovskii, J. Organomet. Chem. 254 (1983) 345;
 (b) ⁵⁷Fe-labeled iron porphyrin complexes and heme proteins are frequently studied, and they exhibit extremely deshielded ⁵⁷Fe nuclei: T. Nozawa, M. Sato, M. Hatano, N. Kobayashi, T. Osa, Chem. Lett. (1983) 1289. C.G. Kalodimos, I.P. Gerothanassis, R. Pieratelli, A. Troganis, J. Inorg. Biochem. 38 (2000) 520. C.G. Kalodimos, I.P. Gerothanassis, E. Rose, G.E. Hawkes, R. Pieratelli, J. Am. Chem. Soc. 121 (1999) 2903.
- [7] L. Baltzer, E.D. Becker, B.A. Averill, J.M. Hutchinson, O.A. Gansow, J. Am. Chem. Soc. 106 (1984) 2444.
- [8] W. Finckh, B.-Z. Tang, D.A. Foucher, D.B. Zamble, R. Ziembinski, A. Lough, I. Manners, Organometallics 12 (1993) 823.
- [9] (a) A. Berenbaum, H. Braunschweig, R. Dirk, U. Englert, J.C. Green, F. Jäkle, A.J. Lough, I. Manners, J. Am. Chem. Soc. 122 (2000) 5765;
 (b) F. Jäkle, A. Berenbaum, A.J. Lough, I. Manners, Chem. Eur. J. 6 (2000) 2762;
 (c) M.J. MacLachlan, J. Zheng, K. Thieme, A.J. Lough, I. Manners, C. Mordas, R. LeSuer, W.E. Geiger, L.M. Liable-Sands, A.L. Rheingold, Polyhedron 19 (2000) 275.
- [10] (a) M. Herberhold, U. Steffl, W. Milius, B. Wrackmeyer, Angew. Chem. 108 (1996) 1927; Angew. Chem. Int. Ed. Engl. 35 (1996) 1803;

(b) M. Herberhold, U. Steffl, W. Milius, B. Wrackmeyer, Angew. Chem. 109 (1997) 1545; Angew. Chem. Int. Ed. Engl. 36 (1997) 1510;

(c) M. Herberhold, U. Steffl, W. Milius, B. Wrackmeyer, Chem. Eur. J. 4 (1998) 1027;

(d) M. Herberhold, F. Hertel, W. Milius, B. Wrackmeyer, J. Organomet. Chem. 582 (1999) 352.

- [11] B. Wrackmeyer, T. Hofmann, M. Herberhold, J. Organomet. Chem 486 (1995) 255.
- [12] (a) M. Bühl, O.L. Malkina, V.G. Malkin, Helv. Chim. Acta 79 (1996) 742;
 (b) M. Bühl, Chem. Phys. Lett. 267 (1997) 251;

(c) For calculations of δ^{99} Ru see: M. Buehl, S. Gaemers, C.J. Elsevier, Chem. Eur. J. 6 (2000) 3272.

- [13] G. Schreckenbach, J. Chem. Phys. 110 (1999) 11936.
- [14] A. Houlton, J.R. Miller, R.M.G. Roberts, J. Silver, J. Chem. Soc. Dalton Trans. (1991) 467.
- [15] M. Herberhold, in: A. Togni, T. Hayashi (Eds.), Ferrocenes, Homogeneous Catalysis, Organic Synthesis, Materials Science, VCH, Weinheim, 1995, pp. 219–278 and references cited therein.